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INTRODUCTION 
 
The scalability of sweep algorithms has been a 

somewhat disputed topic recently.  Some papers have 
predicted that these algorithms will scale if applied 
appropriately, while others have claimed that sweep 
algorithms have limited scalability.  We compare the 
parallel performance models for sweep algorithms to 
actual computational performance using two distinctly 
different discrete ordinates transport codes.  We have run 
both codes beyond 1Million MPI ranks on Lawrence 
Livermore National Laboratory’s (LLNL) BGQ machines 
(SEQUOIA and VULCAN). 

 
PARALLEL SWEEPS 

 
The full-domain “sweep,” in which all angular fluxes in a 
problem are calculated given previous-iterate values only 
for the volumetric source, forms the foundation for many 
iterative methods that have desirable properties [1]. 
Sweep algorithms are parallelized by partitioning the 
domain D into subdomains and assigning them to parallel 
tasks.  Subdomain boundary dependencies are either 
provided by boundary conditions or by solutions to up-
wind neighboring subdomains.  Unfortunately, the sweep 
solution is complicated by the dependency of a given cell 
on its upstream neighbors.  Figure 1 illustrates how 
sweeps progress from cell to cell.   If each subdomain is 
assigned to only one task, the figure 
 

 
 
Fig. 1.  Dependency relationships form “sweeps” across 
the spatial domain. Multiple directions starting from the 

same corner (black, green, red) can be pipelined. 
 
additionally shows how sweeps are computed in parallel 
and how multiple angle sweeps can be pipelined. Each 
picture in the figure depicts a stage in the sweep 
algorithm. We see that, in the beginning of a sweep, some 
parallel tasks are idle. We call this idle time pipe fill. 

There is a similar pipe empty idle time at the end of a 
sweep. To achieve good parallel performance, it is clear 
that reducing pipe fill and pipe empty time is paramount. 

In general, each single group sweep originates from 
one of the 2d corners of the spatial domain and completes 
at the opposite corner (here d is the number of spatial 
dimensions).  If we initiate sweeps from all corners 
simultaneously our pipe fill time is reduced, but we  
introduce collisions (shown as gray domains in Figure 2) 
which must be resolved. A collision occurs when a  
 

 
 
Fig. 2.  Simultaneous sweeps from all corners reduce pipe 

fill, but create collisions (gray domains). 
 
task has more than one angle that can be swept, and a 
decision must be made about which to sweep first. Sweep 
algorithms are therefore composed of two main 
components: a subdomain decomposition (“partitioning”) 
and a schedule that defines how the collisions are 
resolved. The goal of the scheduling algorithm is to 
resolve wave-front collisions in a way that minimizes 
total stage count for the full sweep. 

The Koch-Baker Alcouffe (KBA) algorithm [2], the 
first widely adopted parallel sweep algorithm, introduced 
two ideas that reduce pipe fill and pipe empty time. The 
KBA spatial domain assigns columns of spatial cells to 
each parallel task, essentially decomposing d−space into 
d−1 dimensions so that each task only has 2(d − 1) 
neighbors. Each column is then broken up into smaller 
blocks, which we call subdomains. Because each task 
operates on more than one subdomain, we say the 
decomposition is overloaded.  It is important to note that 
the standard KBA algorithm begins the sweep at only one 
of the eight available corners, which effectively 
eliminates any wave-front collisions in the schedule. 

Dorr and Still [3] and Clouse [4] applied a volumetric 
spatial domain decomposition, which decomposes the 
spatial domain in all dimensions into cube shaped 
subdomains.  These decompositions allow the sweeps to 



begin at all eight corners. Dorr and Still noted that starting 
angles at all eight corners would result in wave-front 
collisions, but they did not discuss strategies for resolving 
the collisions. Clouse developed a hard-coded schedule 
that resolved collisions by using powers-of-2 valued 
decomposition in space and delays in the schedule.  
Clouse also developed a volumetric type decomposition 
with spatial subdomain overloading to increase parallel 
efficiency.  

Collision resolving schedules as outlined in [6,9,10] 
can be applied to both the KBA style and the volumetric 
decompositions. Our results will show that these 
scheduling rules will lead to predictable, efficient scaling 
behavior. For two very different parallel and solution 
strategies 
 
ARDRA 

 
ARDRA [5] is a research code developed at LLNL to 

study parallel discrete ordinates transport.  The code 
applies a general framework to domain decompose the 
angle, energy and spatial unknowns among available 
parallel tasks. Typically, problems run with ARDRA are 
only decomposed in space (volumetrically) and energy.  
Subdomain overloading is not supported.  ARDRA’s 
default spatial discretization is  diamond difference (finite 
difference)  with one spatial unknown per mesh cell. 

ARDRA solves the discrete form of the transport 
problem via source iteration with optional  DSA 
acceleration. This iterative method has the form: For i = 0, 
1, · · · , until convergence, solve: 
 

H i1  L
s
L i Q   (1) 

 
where Ψ is the discrete flux, H is the discrete form of the 
streaming plus collision operator Ω · ∇ + σ, Q is the 
discrete source, L is the discrete moment operator, and  
the matrix Σs represents the discretized scattering 
operator.  ARDRA is unusual in that the code stores the 
entire angular flux vector and builds the RHS of (1) 
before the sweep has occurred. On each subdomain, the 
basic sweep algorithm in ARDRA has the form given in 
Figure 3.  The model of the time to completion for this 
algorithm is: 
 

( )task comm RHS RHST GS T T T ST T      (2) 

 
with G being the number of groups, S being the number of 

sweep stages, ( )task commT GS T T   the time to perform 

the sweep and RHST the time to calculate the RHS. We 

now define parallel efficiency to be: 
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while not converged do 

  Build RHS = L
s
L i Q  from  i  

  for g = 1:G do 
    for m = 1:M do• 
      Wait for incoming boundary data 
      Choose angle ready to be swept• 
      for z = 1:number spatial cells do 

        Solve for 
g ,m,z
i1  

      end for 

      Communicate out-going  i1 
    end for 
  end for  
end while 
 

Fig. 3.  ARDRA Solution Algorithm 
 
PDT 

PDT [6] is a massively parallel discrete ordinates 
transport code under development at Texas A&M 
University and built on the Standard Template Adaptive 
Parallel Library (STAPL) [7] also under development at 
Texas A&M University.  PDT most often utilizes a hybrid 
KBA-Volumetric decomposition, where one dimension 
has two-way spatial parallelism and the other two 
dimensions subdivide the remaining processors in a 
square fashion.  Additionally, PDT simultaneously 
sweeps from all eight corners using an optimal schedule.  
For this paper, PDT uses a piecewise linear discontinuous 
finite element spatial disretization with eight spatial 
unknowns per cell. 

PDT solves the discrete form of the transport 
problem via source iteration and variants, including 
Krylov methods with and without diffusion 
preconditioners. This requires repeated solution of the 
sweep equation: 

1i i
sH L L Q         (4) 

where i iL    contains the moments of the angular 
flux and L is the moments-to-discrete operator.  For this, 
PDT executes the algorithm in Figure 4.  In PDT each 
subdomain can be decomposed into “cell- sets”. A sweep 
task is the execution of the sweep operator on a cellset for 
a set of quadrature directions (an “angleset”) and a set of 
energy groups (a “groupset”). The sizes of cellsets, 
anglesets, and groupsets are determined by aggregation 
parameters, which can be user-defined or code-selected at 
runtime. The  time to completion model for this algorithm 
is:  
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where Tcomm is the communication time, Twu is the time 
per degree of freedom spent getting into a work function, 
Ndof  is the number of spatial degrees of freedom per cell, 
Ac is the number of cells in a cellset, Tc is the time per 
degree of freedom spent in the work-function cell loop 
outside of the angle loop, Am is the number of angles in an 
angleset, Tm is the time per degree of freedom spent in the 
work-function angle loop outside of the group loop, Ag is 
the number of groups in a groupset, and Tg is the time per 
degree of freedom spent in the work-function group loop. 
Parallel efficiency is defined as 
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,
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PDT’s basic solver algorithm is shown in Figure  4. 
 

while not converged do 

  Build B = 
s
i Q 

  for t = 1:Ntask do 
  Obtain next task ID from schedule 
  Wait for incoming boundary data  

    for z = 1:cells in cellset do• 
    Choose next cell from graph 

for m = 1:angles in angleset do•     
  for g = 1:groups in groupset do 

          Build RHS
m,g ,z

from B
g ,z
using L 

        Solve for  i1
m,g ,z

 

        Accumulate  i1
m,g ,z

 into i1
m,g ,z

 

        end for 
    end for 
  end for 

    Communicate out-going  i1
m,g ,z

 

  end for 
end while 
 

Fig. 4.  PDT Solution Algorithm 
 
RESULTS 

 
We present results from ARDRA and PDT.  Both 

transport codes have successfully demonstrated the ability 
to perform the full-domain transport sweep using at least 
1Million MPI ranks. 

 
ARDRA 
 

ARDRA’s scaling problem is based on the Jezebel 
criticality experiment.  We ran this problem in 3D with all 
vacuum boundary conditions, with 48 energy groups and 
3 cases for quadrature sets:  S8, S12, and S16.  We 
perform two week scaling studies:  one with spatial 
parallelism only, and the second with a mixture of energy 

and spatial parallelism.  We ran standard power iteration 
for k-effective stopping the run at 11 iterations for the 
purpose of throughput.  Both of our weak scaling studies 
start with an initial size of one node of Sequoia, using 16 
MPI ranks, with 1 rank per CPU core.  Both studies have 
an initial 48 × 24 × 24 spatial mesh, but decompose the 
problem differently among the 16 ranks. In our first weak 
scaling study we decompose the problem into 12 × 12 × 
12 cells per rank, with the resulting spatial decomposition 
of Px = 4, Py = 2, and Pz = 2. Our second study uses 16-
way on-node energy decomposition, with each rank 
having the entire 48 × 24 × 24 spatial mesh, but only 3 
energy groups, resulting in Px = Py = Pz = 1.  Weak 
scaling is achieved by increasing the number of spatial 
zones proportional to increasing the processor count.  
ARDRA’s largest run is at SEQUOIA’s full scale, which 
is 37.5 trillion unknowns using 1,572,864 MPI ranks, 
resulting in 71% parallel efficiency using energy and 
spatial parallelism. Results are shown in Figures 5 and 6. 

 

 
Fig. 5.  ARDRA Weak Scaling (Spatial Parallelism) 

 

 
Fig. 6.  ARDRA Weak Scaling (Spatial and Energy 

Parallelism) 
 

PDT 
 
PDT’s weak-scaling study was performed using a 3D 

problem introduced by Zerr and Azmy [8] with a single 
energy group, S8 level-symmetric quadrature, vacuum 
boundary conditions, a constant 4096 cells/core, and 



spatial parallelism only.  The cell and sub-domain sizes 
remain constant as the number of MPI ranks is increased 
because the volume of the problem domain is increased in 
proportion to number of ranks.  Figure 7 shows our model 
prediction and data out to 384K MPI ranks on the 
SEQUOIA machine.  Each case was run using 1 MPI 
rank/core.  We have also demonstrated PDT’s ability to 
run with 512K and 1M MPI ranks on the VULCAN 
machine.  In these cases, each job was run with 4 MPI 
ranks/core (one rank per hardware thread).  Based on 
previous experience, the deviation of the data from the 
model at high rank counts indicates a code issue or 
inefficiency that needs to be resolved rather than a 
deficiency in the model itself. 
 

 
 
Fig. 7.  PDT Weak Scaling (Spatial Parallelism) 

 
CONCLUSION 
 

These computational results validate the predictions 
made by the sweep algorithm performance models.  
Codes based on sweep algorithms and domain 
decompositions implemented as described here and in the 
referenced publications will scale to millions of MPI 
ranks and potentially beyond.  The strength of this study 
is that we demonstrate the validity of our sweep algorithm  
scaling predictions using two vastly different codes with 
markedly different domain decomposition and spatial 
discretization choices.  Additional research into 
algorithms and decomposition strategies, as well as code 
improvements, will almost certainly result in improved 
efficiencies. 
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